3D Dimension Extraction From a Scanned Hand for Design and Modeling of Hand Prosthesis Using Deep-Learning Methods						
TECHNION Tzabar Dolev Israel Institute Tzabar Dolev of Technology Guidance: Prof Anath Fischer						
Research Pipeline						
3D hand scan	Handy-Net dimension extraction	CAD model customization	3D printing of hand prosthesis			
	A C B D					

Abstract

This research proposes a dimension extraction method from 3D hand scans that allows the creation of personalized hand-prosthesis without additional engineering design. The main stages of the process include: a 3D scan of the healthy hand, processing the scanned data using a deep neural network for dimension extraction and adjusting relevant dimensions to a CAD model. The final CAD model is then 3D printed with accessible materials.

Hands-On Dataset

- Open source model

Inference Over Scanned Data

We tested hand scans from two sources:

- 64 hand scans which were captured using Intel Realsense D435
- A downloaded Artec Eva model

	Inference over scanned data		
		Average	Standard
		accuracy	deviation
	Synthetic	99.2%	0.06%
	Intel RealSense	95.6%	0.75%
	D435		
	Artec Eva	93.9%	3.9%

Figure 4: hand scans inference Table 1: inference over scanned data

Robustness and Distance Error Analysis

Figure 5: hand model reconstruction

- End-to-end dimensions inference neural network
- Suitable for 3D sensor data

Figure 3: Handy-Net applications

Missing Data Ratio

Outliers Ratio

Perturbation noise std

Figure 6: robustness analysis to data corruption

References

[1] Ben-Shabat, Y., Lindenbaum, M. and Fischer, A., 2018. 3dmfv: Three-dimensional point cloud classification in real-time using convolutional neural networks. IEEE Robotics and *Automation Letters*, *3*(4), pp.3145-3152.

[2] Qi, C.R., Su, H., Mo, K. and Guibas, L.J., 2017. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652-660).

[3] Lee, T.C., Kashyap, R.L. and Chu, C.N., 1994. Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graphical Models and Image Processing, 56(6), pp.462-478.

Laboratory for CAD & Lifecycle Engineering Faculty of Mechanical Engineering, Technion – Israel Institute of Technology

